快速成型技术最初用来制造铸造用模型,后来发展到制造原型零件,主要用于模型或零件的直观检验,关键是要求形状准确,对其力学性能没有太高的要求,所采用的成型材料有液体光敏树脂、腊、纸等替代材料。近年快速成型技术有了新的发展,已经开始在金属材料、陶瓷材料的制备上得到应用,主要目标是快速制造出满足使用性能的致密的金属零件。
从目前RP技术的研究和应用现状来看,快速成型技术的进一步研究和开发工作主要有以下几个方面:
(1)开发性能好的快速成型材料,如成本低、易成形、变形小、强度高、耐久及无污染的成形材料。
(2)提高RP系统的加工速度和开拓并行制造的工艺方法。
(3)改善快速成形系统的可靠性,提高其生产率和制作大件能力,优化设备结构,尤其是提高成形件的精度、表面质量、力学和物理性能,为进一步进行模具加工和功能实验提供基础。
(4)开发快速成形的高性能RPM软件。提高数据处理速度和精度,研究开发利用CAD原始数据直接切片的方法,减少由STL格式转换和切片处理过程所产生精度损失。
(5)开发新的成形能源。
(6)快速成形方法和工艺的改进和创新。直接金属成形技术将会成为今后研究与应用的又—个热点。
(7)进行快速成形技术与CAD、CAE、RT、CAPP、CAM以及高精度自动测量、逆向工程的集成研究。
(8)提高网络化服务的研究力度,实现远程控制。
金属粉末的激光快速成型技术集计算机辅助设计、激光熔覆、快速成型于一体,在无需任何硬质工模具或模型的情况下,能快速制备出不同材料的复杂形状、多品种、小批量的零件,所成型零件致密度高。